Discriminants, Symmetrized Graph Monomials, and Sums Of Squares

نویسندگان

  • Per Alexandersson
  • Boris Shapiro
چکیده

Motivated by the necessities of the invariant theory of binary forms J. J. Sylvester constructed in 1878 for each graph with possible multiple edges but without loops its symmetrized graph monomial which is a polynomial in the vertex labels of the original graph. We pose the question for which graphs this polynomial is a non-negative resp. a sum of squares. This problem is motivated by a recent conjecture of F. Sottile and E. Mukhin on discriminant of the derivative of a univariate polynomial, and an interesting example of P. and A. Lax of a graph with 4 edges whose symmetrized graph monomial is non-negative but not a sum of squares. We present detailed information about symmetrized graph monomials for graphs with four and six edges, obtained by computer calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of squares and negative correlation for spanning forests of series parallel graphs

We provide new evidence that spanning forests of graphs satisfy the same negative correlation properties as spanning trees, derived from Lord Rayleigh’s monotonicity property for electrical networks. The main result of this paper is that the Rayleigh difference for the spanning forest generating polynomial of a series parallel graph can be expressed as a certain positive sum of monomials times ...

متن کامل

Randomization, Sums of Squares, and Faster Real Root Counting for Tetranomials and Beyond

Suppose f is a real univariate polynomial of degree D with exactly 4 monomial terms. We present an algorithm, with complexity polynomial in logD on average (relative to the stable log-uniform measure), for counting the number of real roots of f . The best previous algorithms had complexity super-linear in D. We also discuss connections to sums of squares and A-discriminants, including explicit ...

متن کامل

The ratio and product of the multiplicative Zagreb‎ ‎indices

‎The first multiplicative Zagreb index $Pi_1(G)$ is equal to the‎ ‎product of squares of the degree of the vertices and the second‎ ‎multiplicative Zagreb index $Pi_2(G)$ is equal to the product of‎ ‎the products of the degree of pairs of adjacent vertices of the‎ ‎underlying molecular graphs $G$‎. ‎Also‎, ‎the multiplicative sum Zagreb index $Pi_3(G)$ is equal to the product of‎ ‎the sum...

متن کامل

Sums of Squares, Satisfiability and Maximum Satisfiability

Recently the Mathematical Programming community showed a renewed interest in Hilbert’s Positivstellensatz. The reason for this is that global optimization of polynomials in IR[x1, . . . , xn] is NPhard, while the question whether a polynomial can be written as a sum of squares has tractable aspects. This is due to the fact that Semidefinite Programming can be used to decide in polynomial time (...

متن کامل

Volumes of Nonnegative Polynomials, Sums of Squares and Powers of Linear Forms

We study the quantitative relationship between the cones of nonnegative polynomials, cones of sums of squares and cones of sums of powers of linear forms. We derive bounds on the volumes (raised to the power reciprocal to the ambient dimension) of compact sections of the three cones. We show that the bounds are asymptotically exact if the degree is fixed and number of variables tends to infinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2012